Additive Effects of Physical Exercise and Environmental Enrichment on Adult Hippocampal Neurogenesis in Mice
نویسندگان
چکیده
Voluntary physical exercise (wheel running, RUN) and environmental enrichment both stimulate adult hippocampal neurogenesis but do so by different mechanisms. RUN induces precursor cell proliferation, whereas ENR exerts a survival-promoting effect on newborn cells. In addition, continued RUN prevented the physiologically occurring age-related decline in precursor cell in the dentate gyrus but did not lead to a corresponding increase in net neurogenesis. We hypothesized that in the absence of appropriate cognitive stimuli the potential for neurogenesis could not be realized but that an increased potential by proliferating precursor cells due to RUN could actually lead to more adult neurogenesis if an appropriate survival-promoting stimulus follows the exercise. We thus asked whether a sequential combination of RUN and ENR (RUNENR) would show additive effects that are distinct from the application of either paradigm alone. We found that the effects of 10 days of RUN followed by 35 days of ENR were additive in that the combined stimulation yielded an approximately 30% greater increase in new neurons than either stimulus alone, which also increased neurogenesis. Surprisingly, this result indicates that although overall the amount of proliferating cells in the dentate gyrus is poorly predictive of net adult neurogenesis, an increased neurogenic potential nevertheless provides the basis for a greater efficiency of the same survival-promoting stimulus. We thus propose that physical activity can "prime" the neurogenic region of the dentate gyrus for increased neurogenesis in the case the animal is exposed to an additional cognitive stimulus, here represented by the enrichment paradigm.
منابع مشابه
Preweaning enrichment has no lasting effects on adult hippocampal neurogenesis in four-month-old mice.
Since both living in an enriched environment and physical activity stimulate hippocampal neurogenesis in adult mice, we endeavored to examine whether pre-weaning enrichment, a sensory enrichment paradigm with very limited physical activity, had similar effects on neurogenesis later in life. Mice were removed from the dams for periods of increasing length from post-natal day 7 to 21, and exposed...
متن کاملBMP Signaling Mediates Effects of Exercise on Hippocampal Neurogenesis and Cognition in Mice
Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone m...
متن کاملUntangling the Influences of Voluntary Running, Environmental Complexity, Social Housing and Stress on Adult Hippocampal Neurogenesis
Environmental enrichment (EE) exerts powerful effects on brain physiology, and is widely used as an experimental and therapeutic tool. Typical EE paradigms are multifactorial, incorporating elements of physical exercise, environmental complexity, social interactions and stress, however the specific contributions of these variables have not been separable using conventional housing paradigms. He...
متن کاملRunning is the neurogenic and neurotrophic stimulus in environmental enrichment.
Environmental enrichment (EE) increases dentate gyrus (DG) neurogenesis and brain-derived neurotrophic factor (BDNF) levels. However, running is considered an element of EE. To dissociate effects of physical activity and enrichment on hippocampal neurogenesis and BDNF levels, young female C57Bl/6 mice were housed under control, running, enrichment, or enrichment plus running conditions, and inj...
متن کاملCognitive enhancing effects of voluntary exercise, caloric restriction and environmental enrichment: a role for adult hippocampal neurogenesis and pattern separation?
Several behavioural interventions, such as physical exercise, dietary restriction, and enriched environments are associated with both improved cognition and increased adult hippocampal neurogenesis. Whether the learning and memory improvements associated with these interventions are causally dependent on the upregulated neurogenesis has not yet been conclusively determined. However, with the ac...
متن کامل